	Question	Answer
1	Which one of the following statements best	А
	explains why there is not a solar eclipse during every new moon?	Only A would prevent solar
	A. The Moon's orbital plane is tilted by about	eclipses from occurring
	5° relative to the ecliptic plane	every new moon – the
	B. The Moon takes about 27 ¼ days to complete an orbit relative to the position of distant stars.	others would have no effect
	C. The Moon takes about 29 1/2 days to complete a cycle of lunar phases	
	D. The Moon's diameter is about 4 times smaller than the Earth's	
	E. The Moon undergoes axial precession	
<mark>2</mark>	Relative to the Sun, which of the following planets has the highest orbital speed?	A
	A. Mars	Orbital speed is inversely
	B. Jupiter	proportional to the distance
	C. Saturn D. Uranus	to the Sun. Thus, from the
	E. It depends on the location of the planets	the closest to the Sun.
	along their respective orbits	Further, as all planets have
		roughly circular orbits, their
		orbital speed remains
		time.
<mark>3</mark>	What are the lunar 'seas' made of?	D
	A. Saltwater over oceanic crust.	
	B. Freshwater over oceanic crust.	Trick/troll question. The
	C. Ejecta from impactors	lunar maria is made of
	E. High albedo intrusive metamorphic rock.	igneous rock that formed by
		volcanic eruptions on the
		Moon billions of years ago.
		These basaltic plains i.e.
		mare have low albedo due
4	In the Northern Hemisphere, where must one	B
	point the polar axis of the equatorial mount	
	towards, such that moving the telescope in Right	Polaris is the Pole Star, thus
	Ascension will most precisely mimic the motion of	aligning the polar axis to it
	the sky over the course of a night?	approximately means the
	A. SITIUS (AIPTIA CATIS MIAJOFIS) B. Polaris (Alpha Ursae Minoris)	mount is aligned with
	C. Capella (Alpha Aurigae)	
	D. Alpheratz (Alpha Andromedae)	
	E. Rigil Kentarus (Alpha Centauri)	

<mark>5</mark>	What will be the fate of our Sun immediately after	С
-	it runs out of fuel and ceases all nuclear fusion?	
	A. Brown dwarf	Brown dwarves are failed
	B. Red dwarf	stars, red dwarves are still
	C. White dwarf	fusing hydrogen in their
	D. Neutron star	cores and the Sun is not
	E. Black hole	massive enough to create a
		neutron star or black hole.
6	 Based on our current understanding of the history of the solar system, arrange the following statements in chronological order Planetary migration of the outer planets generates the Late Heavy Bombardment A protoplanetary disk forms, with a protostar (the future sun) in the center. Planetesimals collide to form the cores of future planets A gas cloud becomes unstable and begins gravitational collapse Orbiting dust grains collide with each other to form larger bodies (planetesimals) 	C The process starts with the collapse of a gas cloud (iv), and ends with the Late Heavy Bombardment (i). This leaves only one sensible option – option C.
	 A. ii, iv, v, iii, i, vi B. iv, i, ii, iii, v, vi C. iv, ii, v, iii, vi, i D. ii, iv, iii, v, vi, i E. ii, v, iv, vi, i, iii 	
7	Which of the following planets is not expected to	A
		As Venus is an inferior
	B. Mars	planet, it cannot be seen at
	C. Jupiter	midnight from Singapore.
	D. Saturn	
	E. All the above planets can be visible.	
1		
8	The apparent magnitude of the Sun is known to be	В
	approximately –26 while the Full Moon is known	
	to have an apparent magnitude of approximately –	The magnitude scale is
	12, both rounding down to the nearest integer.	logarithmic, each step of one
	According to the information given above, how	magnitude is equivalent to
	many times is the Sun brighter than the Full	the difference in brightness
	vioon? Choose the closest answer.	or a factor of 2.512
	A. 1 million times	approximately. Since the
	B. 400 thousand times	difference in magnitude of

	C. 140 thousand times	the Sun and the Full Moon is
	D. 14 times	-12+26=14 steps of one
	E. 35 times	magnitude, the Sun is
		approximately 2.51214 =
		~400 000 times brighter
		than the Full Moon.
9	For a given comet, when is its gas tail the longest?	С
	A. When the comet is heading towards the	
	Sun.	A comet's gas tail is
	B. When the comet is heading away from the	produced when solar
	Sun.	heating sublimates ice on
	C. When the comet is nearest to the Sun.	the comet's surface. For this
	D. When the comet is in the Oort Cloud.	reason, gas tails are the
	E. The colder it is, the longer the comet gas	longest when solar heating is
	tail.	at a maximum (i.e. nearest
		to the Sun)
10	Which of the following is TRUE about Vega and	D
	Altair?	
	A. Vega and Altair are only visible in Autumn	The distance between Vega
	B. The distance between Vega and Altair is the	and Altair is approximately
	closest on the 7 th day of the 7 th lunar	16 light years – they are too
	month in the Chinese calendar, hence	far to be bound to each
	resulting in the ancient myth of Vega and	other. Further, their distance
	Altair being star crossed lovers	means that their relative
	C. Vega and Altair together form a	position to each other does
	gravitationally bound binary star system	not change appreciably over
	D. Vega and Altair are part of the "Summer	the course of a year,
	Triangle" asterism, together with Deneb	contrary to the ancient
	E. None of the above	Chinese folklore. Both stars,
		together with Deneb, form
		the "Summer Triangle"
		asterism which is part of the
		summer sky in the northern
		celestial hemisphere. Vega
		and Altair do not form a
		binary star system.
<mark>11</mark>	Although radio waves are commonly used to	Ans: c.
	measure distance to objects within the solar	
	system, the distance to the sun was first measured	Distance from Venus to
	using parallax during a Venus transit. Given that	Earth is (1.496-
	two observatories at each of the poles on Earth are	1.082)x10^11=4.14x10^10m.
	measuring the parallax of Venus while it is	Radius of Earth is
	transiting the Sun, what will be the parallax?	6.370x10^6m
	Assume Venus to be a point. Hint: calculate the	Using small angle
	distance from Venus to Earth during the transit.	approximation, θ=radius of
	a. 1.11 arc minutes	earth/distance from Earth to
	b. 1.62 arc minutes	Venus = 1.5386x10^-4 rad =
	c. 1.06 arc minutes	31.74 arc seconds
	d. 0.554 arc minutes	

	e. 0.843 arc minutes	Taking the anglex2: 31.74x2=63.5 arc seconds = 1.06 arc minutes
12	 An observer notices that star A culminates (in other words, crosses the meridian) at local midnight on January 1st. Two days later, he notices that star B (rather than star A) now culminates at local midnight. Which of the following statements are definitely true? A. Both stars share the same declination B. Both stars share the same right ascension C. Both stars are separated by around 8 minutes of declination D. Both stars are separated by around 8 minutes of right ascension E. Culmination time depends on location, and thus there is insufficient information to answer the question 	D When a star crosses the local meridian is only determined by the right ascension of the star & the time of year (thus A/C/E is wrong). The last part of the puzzle requires one to know that stars rise approximately 4 minutes later every night, yielding D
<mark>13</mark>	 Post processing images is an essential part of astrophotography. Which of the following isn't a purpose of post processing? a. To remove certain wavelengths of light to reduce light pollution b. Adding colour and/or adjusting the colour balance of the image c. Crop and framing the image d. Adjusting exposure and contrast to bring out details e. Combining colour data from separate exposures to build an image 	A There's no way to remove certain wavelengths of light after the image is taken.
14	Three friends are arguing over the positions of sunrise and sunset at different latitudes and seasons. Alni Tak: The sun rises due east and sets due west. Differences in latitude only changes the angle of the sun's path in the sky. Alni Lam: No, the point of sunrise and sunset can be anywhere between 0 degree and 180 degree from North on the East and West sides respectively depending on latitude and season. Min Taka: Both of you are wrong. While it is true the point of sunrise and sunset varies according to	B Option A is wrong because the sun only rises and sets due East and West at equinox. For option C, 30 degrees and 120 degrees azimuth are random values with no physical basis whatsoever. Options D and E are non-answers to begin with.B: Consider the scenario of the sun at summer solstice, i.e. at its most northerly declination
	latitude and season, it can only vary between 30	of 23.4 deg. The above

	degree	s and 120 degrees from due north.	diagram shows the path of
			the sun (in red) at the north
	Who is	right?	pole (90 deg N latitude),
	Α.	Alni Tak	with the red arrow pointing
	В.	Alni Lam	towards the north celestial
	С.	Min Taka	pole.N
	D.	None of them.	Moving towards more
	Ε.	All of them are correct according to their	southern latitudes, at about
		own unique subjective view of the	66.6 deg N, the path of the
		universe.	sun tilts such that it touches
			the horizon at a single point,
			which is in the direction
			ofdue North.Moving further
			south, the path of the sun
			crosses the horizon at two
			points on the northeast and
			northwest.At the equator,
			the sun rises 23.4 deg north
			of east and sets 23.4 deg
			of the equator the scenario
			repeats and the point of
			suprise and supset slowly
			converges towards the
			north, and you can see that
			the length of the day gets
			shorter and shorter until it
			reaches eternal night
			beyond 66.6 deg South. Thus
			at summer solstice the
			azimuth of sunrise ranges
			between due North and 23.4
			deg north of east across
			latitudes.The inverse is true
			at winter solstice, where the
			azimuth of sunrise ranges
			between due south and 23.4
			deg south of east.The sun
			rises between 23.4 deg
			north and 23.4 deg south of
			east in the period between
			solstices at latitudes nearer
			to the equator
			(diagrams can be found in
			the original document but !
			have omitted them here for
			the sake of hrevity)
			the suite of brevity)

<mark>15</mark>	On June 21st, an observer in the Northern	E
	hemisphere notices that the maximum and	
	minimum length of shadow of a 1.0 m pole is 16.3	While the declination of the
	m and 1.05 m respectively. What is the latitude of	sun (already given as + 23.5)
	the observer?	and latitude of observer can
	A 10 degrees N	he solved for it is faster to
	B 25 degrees N	note that the maximum
	D. 25 degrees N	longth of shadow is given
	C. 40 degrees N	(i.e. the sun does not set) A
	D. 55 degrees N	(i.e. the sun does not set). A
	E. 70 degrees N	
		possible for Northern
		observers above the arctic
		circle. (66.5 degrees N)
<mark>16</mark>	The vast majority of globular clusters no longer	С
	appear to produce any new stars today. This is	
	mainly because	Most globular clusters were
	A. Gravitational interactions over billions of	some of the first objects to
	years have ejected gas out of the cluster.	have formed in the galaxies,
	B. The strong solar winds of the stars have	and most are over 12 billion
	pushed out gas.	years old. Their gas has long
	C. Most globular clusters formed very early in	since depleted over this time
	the history of the universe and have long	and thus no star formation
	since exhausted their gas reserves.	occurs within them today.
	D. The production of new stars is	
	outshadowed by the light of the cluster.	
	E. This is a trick question: Many new stars are	
	still being born in most globular clusters.	
	6 6	
17	Copernicus was known for introducing the	В
	Heliocentric System which placed the Sun, rather	
	than the Earth, at the center of the universe. What	The only one real advantage
	were some advantages of the Copernican model	of Copernicus' heliocentric
	over the then prevailing Ptolemaic geocentric	model over the prevailing
	model?	geocentric system was that
	i. The Copernican model had removed the	it eliminated some of the
	need for enjcycles	major enjcycles used to
	ii The Conernican model provided a simpler	explain retrograde motion
	account of retrograde motion	which was explained as a
	iii The Conernican model could predict	result of parallax between
	oclinsos	the planets and the
	iv The Concernican model eveloins the orbit of	background stars. Other
	iv. The coperfican model explains the orbit of	
		smaller epicycles were
	A. I, II	required to make up for
	B. II only	discrepancies between
	C. I,II,III	predicted and observed
	D. i,ii,iv	planetary positions
	E. i only	because the Copernican
1		system utilized perfect
		circles. It is only after

		Kepler's introduction of elliptical orbits were all epicycles then removed.In a similar vein, the Copernican system was no better at eclipse prediction due to its use of circular orbits, which did not allow for accurate calculations of planetary positions. More accurate predictions only came after Kepler's elliptical orbits and his three laws of planetary motion. The case is similar for comets, which travel on highly elliptical orbits
18	Refer to the following passage for Q18-19	E
	This Week's Planet Roundup	
	Mercury, Venus, and Mars remain deep in the glare of the Sun. Jupiter (magnitude –2.0, in the feet of Ophiuchus) is the white dot low in the southwest as twilight fades. Can you still spot Antares, one sixteenth as bright at magnitude +1.0, 10° to Jupiter's lower right? Saturn (magnitude +0.5, in Sagittarius) is the steady yellow "star" in the south-southwest during and after dusk. It's 25° upper left of Jupiter. Below Saturn is the handle of the Sagittarius Teapot. Barely above it is the dimmer, smaller bowl of the Sagittarius Teaspoon. Uranus (magnitude 5.7, in Aries) is well up in the east by 10 p.m. daylight saving time. It's highest in the south around 1 or 2 a.m. Neptune (magnitude 7.8, in Aquarius) is in the southeast after dark and highest in the south by 10 or 11. Extracted from Sky and Telescope's This Week's Sky at A Glance, Oct 4-12 https://www.skyandtelescope.com/observing/this- weeks-sky-at-a-glance-october-4-12/ (do not include the reference in the question paper)	All references to up/down/left/right are relative to the observer's orientationthus they can flip depending on where the observer is facing. While the cardinal directions are defined relative to the celestial sphere (and thus one person's north does not differ from another person's north), objects themselves can shift in position as we move from one observer to another. In other words, observers in the far south would notice all the planets to lie in the NORTHERN half of the sky and thus E is correct.

	This passage is written from the perspective of	
	time. Suppose we keep the time fixed, but allow	
	the charge of leasting to charge Which of the	
the observer's location to change. Which of the		
	following statements are still valid from an	
	observer stationed ANYWHERE ELSE on Earth?	
	Exclude the geographic North and South Poles	
	from consideration	
	A. Jupiter is the white dot low in the	
	southwest as twilight fades	
	B. Antares is 10° to Jupiter's lower right	
	C. Saturn is in the south-southwest during and	
	after dusk	
	D. Uranus is highest in the south around 1-2	
	a.m	
	E. None of the above	
19	This passage is written for the first week of a	D
	certain month. This month is most probably:	
	A. January	Notice that Antares (with
	B. March	Jupiter) is low in the
	C. July	southwest during sunset. As
	D. October	Antares is located within
	E. Insufficient information to determine the	Scorpius, an early summer
	answer	constellation. this tells us
		that summer has just ended.
		,,
		Another way to see this is to
		observe that Uranus is near
		opposition, and is currently
		located within Aries.
		Recalling the significance of
		the first point of Aries
		(which is not within the
		boundaries of Aries but lies
		close to it in the present
		day), this tells us that the
		Earth is approximately half a
		year away from the March
		equinox
20	Benjamin is attempting to view M31, the	D
1	Andromeda Galaxy through a pair of binoculars in	
1	Singapore. At the position where M31 should be,	The core of M31 is a lot
1	he sees a dim fuzzy elliptical blob. Unfortunately,	brighter than its spiral arms
1	he could not see the spiral arms of M31. What is	(as is the case with most
	the most likely explanation?	spiral galaxies), such that
1	A. The surface brightness of M31 is too low to	astrophotographers have to
	be seen in Singapore. Benjamin is most	take special care not to

	 likely looking at M110, a dwarf elliptical galaxy near M31 which has a much higher surface brightness. B. Binoculars do not have sufficient magnification and resolution to resolve the spiral arm structure, thus the whole galaxy appears as a fuzzy elliptical blob. C. No galaxies can be seen in Singapore. Benjamin is most likely hallucinating. D. Benjamin is only seeing the bright center core of M31, while its spiral arms are too dim to be visible. E. M31 does not have spiral arms as it is actually a globular cluster. 	overexpose the core when imaging the galaxy.M110 has actually very low surface brightness and can only be seen from sufficiently dark sites.
21	The crescent moon was photographed to have the "dark part" of the moon bright enough such that the lunar features are visible to the naked eye. Which of the following best explains this? A. The "dark side" of the moon is a misnomer -all areas of the moon receive about equal sunlight when averaged out throughout a year B. The dark area is not in total shadow and hence some light still reaches it from the Sun. C. This phenomenon can be observed a few days before a lunar eclipse. The "dark part" is Earth's shadow on the moon D. The "dark part" of the moon receives reflected light off Earth to be illuminated. E. This phenomenon occurs when 2 conditions are met -the moon is in syzygy with Earth and the Sun, and the moon is at its perihelion D. Tredit: Instagram -rami_astro	D This phenomenon is known as Earthshine. From the perspective of an observer on the Moon, the Earth would appear nearly full. This casts sufficient illumination to visibly light up the surface. E cannot be true – when the Moon is in syzygy with Earth and the Sun, this means that all 3 bodies are in a straight line. In other words, the Moon is either new or full, which is clearly not the case as per the image.
22	Consider the following three pairs of binoculars. (I) Pentax 8.5×21 U-series Papilio II	С

1	(II) Vixen 10×50 Ascot	The Aperture of I is too
	(III) Orion 20×80 Astronomy	small, leading to insufficient
	Which of the above would NOT be recommended	light collecting power.
	for astronomy via handheld binocular viewing?	Coupled with its relatively
	A. I only.	high magnification, any
	B. I and II only.	resultant images will be dim.
	C. I and III only.	
	D. II and III only.	II is typical for astronomy
	E. All of the above would not be	binoculars
	recommended	
		III is not recommended as
		the rather high
		magnification makes the
		image very unstable with
		handheld viewing
23	While a superior planet is experiencing apparent	E
	retrograde motion, the planet	
	A. Rises in the west and sets in the east	Superior planets generally
	B. Rises and sets earlier than expected	drift eastward relative to the
	C. Moves backwards in its orbit around the	stars. The exception occurs
	Sun	during apparent retrograde
	D. Appears to stop its westward motion, and	motion, when the planet
	then drifts eastwards relative to the stars	actually appears to drift
	E. Appears to stop its eastward motion, and	west for a time.
	then drifts westwards relative to the stars	
24	Hindu cosmology (c 1700 to 1100 BCE) states that	C
	one cycle of existence is approximately 311 trillion	
	years, and the life of one universe is approximately	The Big Crunch is a proposed
	8 billion years. The universal cycle is preceded by	model in which the
	an infinite number of universes and is to be	universe's acceleration
	followed by an infinite number of universes. This	
1		eventually slows and
	concept is most similar to the concept of	eventually slows and reverses, leading the
	concept is most similar to the concept of A. the Big Bang	eventually slows and reverses, leading the universe to collapse back
	concept is most similar to the concept of A. the Big Bang B. steady state	eventually slows and reverses, leading the universe to collapse back into a single point, bringing
	concept is most similar to the concept of A. the Big Bang B. steady state C. the Big Crunch	eventually slows and reverses, leading the universe to collapse back into a single point, bringing about another Big Bang and
	concept is most similar to the concept of A. the Big Bang B. steady state C. the Big Crunch D. accelerating expansion	eventually slows and reverses, leading the universe to collapse back into a single point, bringing about another Big Bang and another universe. Sound
	concept is most similar to the concept of A. the Big Bang B. steady state C. the Big Crunch D. accelerating expansion E. negative pressure	eventually slows and reverses, leading the universe to collapse back into a single point, bringing about another Big Bang and another universe. Sound familiar?
25	concept is most similar to the concept of A. the Big Bang B. steady state C. the Big Crunch D. accelerating expansion E. negative pressure	eventually slows and reverses, leading the universe to collapse back into a single point, bringing about another Big Bang and another universe. Sound familiar?
25	concept is most similar to the concept of A. the Big Bang B. steady state C. the Big Crunch D. accelerating expansion E. negative pressure I want to take a color image of the Great Dark Spot (6600 km across) using individual 10s exposures in 2	eventually slows and reverses, leading the universe to collapse back into a single point, bringing about another Big Bang and another universe. Sound familiar? Answer: E.
<mark>25</mark>	 concept is most similar to the concept of A. the Big Bang B. steady state C. the Big Crunch D. accelerating expansion E. negative pressure I want to take a color image of the Great Dark Spot (6600 km across), using individual 10s exposures in 3 different wavelengths. My setup prious clear skips in	eventually slows and reverses, leading the universe to collapse back into a single point, bringing about another Big Bang and another universe. Sound familiar? Answer: E.
25	concept is most similar to the concept of A. the Big Bang B. steady state C. the Big Crunch D. accelerating expansion E. negative pressure I want to take a color image of the Great Dark Spot (6600 km across), using individual 10s exposures in 3 different wavelengths. My setup enjoys clear skies in the Australian outback and uses a Schmidt Cassograin	eventually slows and reverses, leading the universe to collapse back into a single point, bringing about another Big Bang and another universe. Sound familiar? Answer: E. Using trigonometry, the
25	 concept is most similar to the concept of A. the Big Bang B. steady state C. the Big Crunch D. accelerating expansion E. negative pressure I want to take a color image of the Great Dark Spot (6600 km across), using individual 10s exposures in 3 different wavelengths. My setup enjoys clear skies in the Australian outback and uses a Schmidt-Cassegrain telescope and tracking equatorial mount only.	eventually slows and reverses, leading the universe to collapse back into a single point, bringing about another Big Bang and another universe. Sound familiar? Answer: E. Using trigonometry, the Great Dark Spot spans
25	 concept is most similar to the concept of A. the Big Bang B. steady state C. the Big Crunch D. accelerating expansion E. negative pressure I want to take a color image of the Great Dark Spot (6600 km across), using individual 10s exposures in 3 different wavelengths. My setup enjoys clear skies in the Australian outback and uses a Schmidt-Cassegrain telescope and tracking equatorial mount only.	eventually slows and reverses, leading the universe to collapse back into a single point, bringing about another Big Bang and another universe. Sound familiar? Answer: E. Using trigonometry, the Great Dark Spot spans $\operatorname{arcsin}\left(\frac{6600}{4.4 \ billion}\right) = 3.18 \times$
25	 concept is most similar to the concept of A. the Big Bang B. steady state C. the Big Crunch D. accelerating expansion E. negative pressure I want to take a color image of the Great Dark Spot (6600 km across), using individual 10s exposures in 3 different wavelengths. My setup enjoys clear skies in the Australian outback and uses a Schmidt-Cassegrain telescope and tracking equatorial mount only. Suppose Lonly can vary the aperture of my telescope	eventually slows and reverses, leading the universe to collapse back into a single point, bringing about another Big Bang and another universe. Sound familiar? Answer: E. Using trigonometry, the Great Dark Spot spans $\operatorname{arcsin}\left(\frac{6600}{4.4 \ billion}\right) = 3.18 \times 10^{-7} \ rad = 0.065 \ arcsec.$
25	 concept is most similar to the concept of A. the Big Bang B. steady state C. the Big Crunch D. accelerating expansion E. negative pressure I want to take a color image of the Great Dark Spot (6600 km across), using individual 10s exposures in 3 different wavelengths. My setup enjoys clear skies in the Australian outback and uses a Schmidt-Cassegrain telescope and tracking equatorial mount only. Suppose I only can vary the aperture of my telescope. What is the minimum diameter my telescope needs to	eventually slows and reverses, leading the universe to collapse back into a single point, bringing about another Big Bang and another universe. Sound familiar? Answer: E. Using trigonometry, the Great Dark Spot spans $\operatorname{arcsin}\left(\frac{6600}{4.4 \text{ billion}}\right) = 3.18 \times 10^{-7} \text{ rad} = 0.065 \text{ arcsec.}$ Since the Rayleigh Criterion
25	 concept is most similar to the concept of A. the Big Bang B. steady state C. the Big Crunch D. accelerating expansion E. negative pressure I want to take a color image of the Great Dark Spot (6600 km across), using individual 10s exposures in 3 different wavelengths. My setup enjoys clear skies in the Australian outback and uses a Schmidt-Cassegrain telescope and tracking equatorial mount only. Suppose I only can vary the aperture of my telescope. What is the minimum diameter my telescope needs to have, such that all exposures satisfy my technical	eventually slows and reverses, leading the universe to collapse back into a single point, bringing about another Big Bang and another universe. Sound familiar? Answer: E. Using trigonometry, the Great Dark Spot spans $\operatorname{arcsin}\left(\frac{6600}{4.4 \ billion}\right) = 3.18 \times 10^{-7} \ rad = 0.065 \ arcsec.$ Since the Rayleigh Criterion is given by:
25	 concept is most similar to the concept of A. the Big Bang B. steady state C. the Big Crunch D. accelerating expansion E. negative pressure I want to take a color image of the Great Dark Spot (6600 km across), using individual 10s exposures in 3 different wavelengths. My setup enjoys clear skies in the Australian outback and uses a Schmidt-Cassegrain telescope and tracking equatorial mount only. Suppose I only can vary the aperture of my telescope. What is the minimum diameter my telescope needs to have, such that all exposures satisfy my technical requirements?	eventually slows and reverses, leading the universe to collapse back into a single point, bringing about another Big Bang and another universe. Sound familiar? Answer: E. Using trigonometry, the Great Dark Spot spans $\operatorname{arcsin}\left(\frac{6600}{4.4 \text{ billion}}\right) = 3.18 \times 10^{-7} \text{ rad} = 0.065 \text{ arcsec.}$ Since the Rayleigh Criterion is given by: $\sin \theta = -1.22^{\lambda}$

	You are given that Neptune will be 4.4 billion kilometres away at the time of the shot and the	This reduces to	
exposures will be taken in red (650nm), green (550n		6600	
	and blue (450 nm)	$D = 1.22\lambda \div \frac{1}{4.4 \text{ billion}}$	
		Yielding approximately 53	
	A. 0.05 cm	cm, 45 cm and 37 cm for	
	B. 37 cm	each wavelength of light	
	C. 45 cm	respectively.	
	D. 53 cm	But wait a minute: we have	
	E. Not possible given the current setup.	had telescopes way larger	
		than this when Neptune was	
		discovered. Why didn't we	
		know of the Great Dark Spot	
		then? The answer is that due	
		to atmospheric turbulence,	
		by seeing . In other words.	
		without adaptive optics,	
		increasing the aperture	
		beyond 4-8" does not	
		increase the resolution of a	
26	Ear Questions 26.28, refer to the image helow	ground-based telescope.	
20	Tor Questions 20-28, refer to the image below	D	
	<image end="" for="" moved="" of="" readability="" table="" to=""/>	Refer to the annotated	
		image. A (Rigel), B(Sirius)	
	Which of the following is the star Canopus	and D (Aldebaran) are part	
	A. A	of the Winter Hexagon	
	D. D		
	E. None of the above		
27	Which of the below Asterisms is not in the field of	A	
	view below		
	A. The W of Cassiopeia	Cassiopeia is not in the	
	B. Winter Triangle	image. Refer to the	
	C. Winter Hexagon	annotated image.	
	D. False Cross		
28	Can you see the plane of the Milky Way in the	A	
	above field of view? If so, state which section of		
	the Milky Way is visible	Crux and Auriga lie within	
	A. Yes, the section between Crux and Auriga	the plane of the Milky Way	
	Taurus	of the image. Cancer and	
L			

	C.	Yes, the section between Scutum and Crux	Taurus are zodiac
	D.	Yes, the section between Orion and	constellations – they do not
		Perseus	lie on the plane of the Milky
	Ε.	No I cannot see the Milky Way in this field	Way and thus B is false.
		of view even if viewed from a dark sky site.	Scutum and Perseus are not
			visible (thus C and D are
			false)
29	hich of t	he following is TRUE about an emission	D
	nebula	1?	
	Α.	It emits hundreds to millions of stars and	A/B are nonsense options
		gravitationally binds them together tightly	that are attempts to
	В.	It appears to have spiral arms that are	describe a galaxy. C is a
		emitted from its center	description of dark matter. E
	С.	It does not appear to interact with	is wrong – while emission
		observable electromagnetic radiation	nebulae tend to emit
	D.	It is made up of ionized gases that emit	strongly in certain
		light of various wavelengths	wavelengths, they do not
	Ε.	It only emits light of a single wavelength.	ONLY emit light of one
			wavelength.
30	Suppo	se there is a planet beyond Neptune, moving	С
	in a or	bit about 20 times larger than Neptune's	
	orbit c	n average. What would be its approximate	
	orbita	period?	Apply Kepler's Third Law
			$T^2 \propto r^3$
	Α.	740 years	Hence, the result of your
	В.	3,300 years	calculation should be $T =$
	С.	14,700 years	$\sqrt{164.79^2 * 20^3} = 14739$
	D.	4.5 million years	years.
	E.	10.9 million years	
31	What	s light trespass in astronomy?	Ans: A.
	a.	It is when unwanted and uncontrolled light	
		enters people's property and affects them.	B is skyglow, while C, D and
	b.	It is when light pollution lights up and	E have nothing to do with
		trespasses into the night sky.	light trespass.
	с.	It is when light from a reflection nebula	
		affects the emission nebula that you are	
		trying to photograph.	
	d.	It is when light from a star shines through a	
		dark nebula, causing the dark nebula to	
		glow.	
	e.	It is when you trespass a private	
		observatory, but just slightly.	
22	The M	inter Hermonia in an estadore that so state 7	r
32	over an	inter mexagon is an asterism that contains /	E
		rely bright stars from the Bull, the Hunter,	Arcturus is of the
		ear Dog, the Lesser Dog, the Charloteer and	Arcturus is OF LITE
		vins. which of these stars is not part of the	thus not part of the Minter
	winte	n nexagon?	thus not part of the Winter

	A. Capella	Hexagon which contains
	B. Procyon	Stars of Orion, Canis Major,
	D Castor	and Auriga
	F Arcturus	
33	The classification of stars is primarily based on their temperatures. The Harvard spectral classification scheme assigns each star a spectral type. If there are 3 stars which are blue, yellow and red in colour respectively, what can be a possible combination of their spectral types in that specific sequence (ie. Blue, yellow, red)? A. O,G,M B. B,M,A C. A,M,K D. M,K,G E. A,B,O	A In order of decreasing surface temperature, the spectral classes are OBAFGKM. Hotter stars are bluer, thus connecting these two concepts together yields the desired answer.
34	At 4am on 3 rd August, you notice that Alpheratz, the Alpha star in Pegasus, is right on the meridian. On which date would Alpheratz rise at approximately 6pm? A. 2 nd September B. 2 nd October C. 2 nd November D. 2 nd December E. 2 nd January	B Stars rise 4 minutes earlier every day. This translates to approximately 2 hours earlier every month. If Alpheratz is on the meridian at 4 am, that means it rose at 10 pm in August. Thus we need to advance two months, yielding B.
35	 The luminosity of the Sun, L⊙, is 3.828*1026W. Polaris has a mass of 7.5M⊙and a diameter 30 times that of the Sun. The difference between their absolute magnitudes is 8.47. What is the surface temperature on Polaris? A. 7600K B. 7400K C. 7200K D. 7000K E. 6800K 	Answer: B With the mass of Polaris and the difference between absolute magnitudes, you can easily find the luminosity of Polaris. $\frac{L_1}{L_2} = 10^{\frac{M_2 - M_1}{2.5}}$ where $M_2 - M_1$ is the difference in absolute magnitudes, L_1 is the luminosity of Polaris and $L_2 = L_{\odot}$. Your calculation should yield $L_1 = 9.35 * 10^{29}$ W

		Use the Stefan-Boltzmann Law, Luminosity $L = 4\pi R^2 \sigma T^4$ Your answer should be $T =$
		7410 К.
36	Consider the following two scenarios:	С
	Scenario A: The Earth is orbiting around the Sun in the anti-clockwise direction as viewed vertically above from its North Pole.	The following diagram might shed some light on how to visualise this problem. Note that the higher the relative
	Scenario B: The Earth is orbiting around the Sun in the clockwise direction as viewed vertically above from its North Pole. Which of following corresponds to the approximately best local time in each scenario to observe as many sporadic	speed of the incoming meteor, the higher the frequency of sporadic meteors observed.
	meteors as possible? Note that in both scenarios, Earth is rotating in the anti-clockwise direction.	<image at="" document="" end="" of=""/>
37	 Tides are the rise and fall of sea levels caused by the combined effects of gravitational forces exerted by the moon and the sun, and the rotation of the earth. A spring tide is when the tide is at its maximum. Generally, when does a spring tide occur? A. The moon and the sun is on the same side of the earth B. The moon and the sun is on the opposite side of the earth C. Neither, it occurs during spring when the moon is closest to the earth D. Both a) and b) E. Whenever the angular distance between the Moon and Sun reaches 90 degrees, as measured from earth. 	D More formally, a spring tide occurs when the Moon, Earth and Sun are in syzygy (aka all 3 bodies are in a straight line)
50	 Which of the stars will always be seen? I. Alderamin (RA/DEC: 21h 19min/+62°40'18") II. Antares (RA/DEC: 16h 21min/-26°28'29") III. Betelgeuse (RA/DEC: 5h 26min/+7°24'31") IV. Capella (RA/DEC: 5h 18min/+46°00'57") V. Shedar(RA/DEC: 0h 41min/+56°38'54") A. Il only 	For a star to never set, its declination must be more than 90°-latitude. In this case, stars with declination north of 54°18'38'' N never set.

	B. Land V only	
	C. II and III only	
	D. I, IV and V only	
	E. I, III, IV and V only	
39	Enceladus, a moon of Saturn, is known to possess	С
	cryovolcanoes near its south pole. These	
	cryovolcanoes are observed to constantly eject jets	Due to its great distance
	of water vapour and other volatiles into space.	from the Sun, Enceladus
	Which of these CANNOT possibly be reasons why	receives very little solar
	Enceladus exhibits cryovolcanic activity?	insolation. Furthermore,
		these jets are located near
	A. Enceladus contains a subsurface water	the pole, which generally
	ocean under the south pole, providing a	experiences a low sun angle
	Source of water for these jets.	and thus little direct
	b. That include exerced upon Enceldus heats	machanism cannot nossibly
	sustain these jets	he a cause of cryovolcanic
	C Dark albedo features preferentially absorb	activity
	sunlight, generating warm spots on	decivity.
	Enceladus that create jet activity.	
	D. The decay of radioactive elements within	
	Enceladus heats the ocean and helps to	
	power these jets.	
	E. All of the options above are possible	
	reasons for cryovolcanism on Enceladus	
40	Sharadh's Q3	E
11	Sharadh's O4	
41	Sharaun S Q4	D
42	Sharadh's O5	B
72		
43	Two days before a full moon, you wish to observe	D
	a meteor shower. At approximately what time	
	would the moon rise? You are given that sunset	On full moon, the moon
	occurred around 1900 and that you are in	rises at approximately 1900
	Singapore.	(when the sun sets). It sets
		later by about 50 minutes
	A. 0517	each day. Thus subtract 100
	B. 0913	minutes from 7 pm to obtain
	C. 1654	the answer.
	D. 1734	
	E. 2041	Note: actual moonrise time
	You are surrently on helider in Grathand Name	on 13 August 2019.
44	rou are currently on nonday in Svalbard, NorWay $(78^{\circ} 12')$ $(15^{\circ} 20')$ Volumber on that the sub-sizes	D
	northeast and sets porthwest Which direction will	From the diagram it can be
	the sun he at local noon?	seen that the sun will
	A. North	
1		1

	B. South	culminate in the south at
	C. East	northern latitudes
	D. West	<diagram at="" end="" of<="" th=""></diagram>
	E. Zenith	document>
45	 E. Zenith Which of these statements about the night sky is factually accurate? You are given that these statements are written for an observer in Singapore. A. One can easily see the Orion Nebula at midnight in May B. As it is circumpolar, Polaris is easily visible above the horizon for all Singaporeans. C. A line drawn from Sirius to Canopus points approximately due South towards the South Celestial Pole D. During the June holidays, Andromeda is above the horizon immediately after sunset. E. One can use the Big Dipper to find Polaris by following the arc of its handle. 	document> C A is false – Orion sets almost immediately after sunset in May. While Polaris is technically circumpolar from Singapore, its exceedingly low altitude means that it is often obstructed from view, and suffers from large amounts of atmospheric extinction. D is false – Andromeda is an autumn constellation, and thus would not have risen at the stated time. E is false – these are finding
		Arcturus instead.
46	Why is the sky blue?	В
	A. The ocean reflects light to the atmosphere,	A is false for the sky is clearly
	B. Blue light scatters more than red light in	still blue inland.
	causing the sky to appear blue as the	C is false because the
	effectively than red light	transparent at visible
	C. The atmosphere absorbs other colours of light more than blue due to its shorter	wavelengths. For similar reasons, D is false.
	D. Both a) and b)	E is false/nonsense – the
	E. The upper atmosphere of the earth emits blue light due to ionisation when solar	ionosphere is too rarefied to produce enough blue light to
	radiation interacts with the particles in the sky.	colour the entire sky with such intensity.
47	The fastest-spinning neutron star is known as PSR	В
	J1748-2446ad. Given that its radius is 16km and it	
	spins at a rate of 43000 revolutions per minute,	

	find the greatest speed at which its surface is	This speed will be at the
	moving in terms of the speed of light.	equator.
	A. 0.12c	
	B. 0.24c	43000/min = 716.667/s ω =
	C. 0.36c	716.667 * 2π = 4503 rad/sV
	D. 0.48c	= Rω = (16x103)*(4503) =
	E. 0.80c	7.2047x107m/s = 0.24c
48	Which option correctly depicts the sequence of events detailing how a solar mass star evolves over time?1) A nebula collapses, forming a protostar	B Solar mass stars do not become supernovae. They
	 2) Hydrogen runs out in the core, leading to expansion into a red giant star 3) Hydrogen fusion begins, leading to a main 	are massive enough to fuse helium into carbon, but no more.
	sequence star	
	 Outer layers are expelled into space, leaving behind a white dwarf. 	
	 Core helium fusion begins, producing carbon. Helium eventually runs out. 	
	 The core of the star commences fusion of carbon and heavier elements. 	
	7) Core collapse leads to a supernova	
	A. 1>2>4	
	B. 1>3>2>5>4	
	C. 1>3>6>7	
	D. 1>5>3>2>6>7	
	E. 1>5>3>4	
49	You've recently bought a new 254mm aperture F/5	D
	Centre Singanore and it came with a standard	The focal length is $5 \times$
	25mm 52° eveniece. Calculate the magnification	254mm - 1270mm
	and true field of view of the set up	234mm – 1270mm
	and true field of view of the set up	The associated magnification
	a 50.8 times 1.63°	is thus $\frac{1270}{12} = E0.0$ times
	b. 10.2 times, 5.12°	$\frac{15 \text{ trus}}{25} = 50.6 \text{ trifles}$
	c. 102 times. 0.512°	
	d. 50.8 times, 1.02°	r ne true field of view is then
	e. 312 times, 0.182°	$\frac{32}{50.2} = 1.02^{\circ}$
50	Why do star trails annear in long exposure	50.8 D
	astrophotos?	-
		The stars appear to rotate
	<insert at="" end="" julian's="" of="" picture="" table.<="" th="" the="" –=""><th>about the NCP and SCP.</th></insert>	about the NCP and SCP.
	Original is in box>	
	-	
	Pic credit: Julian Cheung	

a. Stars have 'tails' like comets
b. Internal camera defects/errors/miscalibration.
c. The camera's tripod is loose and the camera is
slowly tilting.
d. Due to the rotation of the Earth, causing the
stars to move across the sky.
e. The stars in the sky are orbiting around the
Earth.

Q26-28

Annotated version (answer only)

Q36 Table

	Scenario A	Scenario B
A	6 PM – 12 MN	6 PM – 12 MN
В	6 PM – 12 MN	12 MN – 6 AM
С	12 MN – 6 AM	6 PM – 12 MN
D	12 MN – 6 AM	12 MN – 6 AM
E	The best time is season dependent	

Q36 Answer

Q44 Answer

Q50

