
Cave in the Tundra [20 marks] 

One of the best blackbodies known in physics is a black hole, emitting a form of blackbody 
radiation known as Hawking radiation. Over time, if no incident matter or energy is absorbed 
by the black hole, this radiative emission results in the black hole losing mass in a process 
known as evaporation.   

Therefore, a black hole can be treated as a blackbody of temperature T, where T is given by 

T =  
ħ𝑐𝑐3

8𝜋𝜋kGM
 

Where  
ħ is the reduced Planck constant ħ = h/2π 
k is the Boltzmann constant 
G is the Universal Gravitational Constant 
and M is the mass of the black hole 
 
i) Find the blackbody temperature of Sagittarius A*, the supermassive black hole at the 

centre of the Milky Way Galaxy and comment on your result. Sagittarius A* has a mass of 
4 x 106 M☉. [2 marks] 

 
T = ħc3/8πkGM = 1.55 x 10-14 K 

This temperature is extremely low and close to absolute 0. 
 
The escape velocity from an object of mass M is given by  

 
vescape = (2GM/R)0.5 

 
ii) Using the equation for escape velocity, obtain an equation relating the mass of a black 

hole to the radius of its event horizon. [2 marks] 
 
Ans:  

vescape = (2GM/R)0.5 
M = R(c2/2G) 

M = 6.892 x 1026 R 
 
iii) Using the Stefan-Boltzmann law, the result from (ii) and the equation for black hole 

temperature above, derive an equation relating the total power emitted from Hawking 
radiation to the radius of a black hole. Hence, comment on the relationship between the 
total emissive power from Hawking radiation and the radius of the black hole event 
horizon. [3 marks] 

 
Ans: 

T = ħc3/8πkGM = ħc3/8πkGR(c2/2G) 
T = ħc/4πRk 

P = 4πR2σT4 = (4πR2σ) x (ħc/4πRk)4 = σ(ħc/k)4/ 64π3R2 
 



The radiative power of Hawking Radiation is inversely related to the square of the black hole 
radius/inversely related to the surface area of the black hole’s event horizon.  
 
iv) Based on your result in question (iii), explain why black holes are thought to radiate in a 

“flash” at the end of the evaporation process. [1 mark] 
 
At the end of the evaporation process, R is extremely small, resulting in maximal hawking 
radiation P.  
 
v) Find the solar radiative flux at a distance of 1AU [1 mark] 
 
Solar Flux = 3.846 x 1026 / 4π(1.5 x 1011)2 = 1360 W/m2 
 
Given that at 1 AU, there is a solar radiative flux of 1.4 kW/m2.  
 
vi) Estimate the total amount of solar radiation absorbed per second by a black hole with an 

event horizon of radius R, treating it as a solid blackbody sphere of 1.5R (photon sphere 
radius) located at a distance of 1AU from the sun. [1 mark] 

 
P = (1.52)1400 πR2 = 3150 πR2 

Possible Common mistake: Students using the area of a sphere instead of a disc 
 
In equilibrium, the incident radiative energy will be equal to the radiant energy from the black 
hole.  
 
vii) Consider a black hole located at a distance of 1AU from the Sun. Find the equilibrium 

radius for such a black hole. [3 marks] 
 

3150 πR2 = σ(ħc/k)4/ 64π3R2 
3150 R4 = σ(ħc/k)4/ 64π2 
R4 = σ(ħc/k)4/ 201600π2 

 
From formula booklet, σ = 5.67 x 10-8; k = 1.38 x 10-23; ħ = 1.05457 x 10-34 

ħc/k = 2.29 x 10-3 
 
Therefore,  

R4 = (5.67 x 10-8) (ħc/k)4/ 201600π2 
R = (5.67/201600π2)0.25 x (2.2926 x 10-5) 

R = 9.42 x 10-7 m 
 
viii) Calculate the equivalent blackbody temperature of this black hole [1 mark] 
 

T = ħc/4πRk = (2.29 x 10-3)/(4π x 9.42 x 10-7) = 193.45K 
 
ix) Comment about the significance of this equilibrium radius in terms of how the mass of a 

black hole changes over time [1 mark].  
 



At this equilibrium radius, the black hole’s mass does not change with time/steady state mass.  
 
Consider instead a black hole located deep in intergalactic space, with no significant sources 
of radiation aside from the Cosmic Microwave Background Radiation (CMBR).  
 
x) Given that the temperature of the CMBR is 2.725K, find the equilibrium radius and mass 

for such a black hole. [3 marks] 
 
Comment on solution:  
Since both the black hole and CMBR are nearly perfect blackbodies, in equilibrium, the 
temperature of such a black hole would equal the temperature of the CMBR. The same result 
can be obtained with a more tedious calculation involving calculating the emission from the 
CMBR as an isotropic blackbody emission and forming a similar equation to that used for a 
black hole irradiated by solar radiation.  
 
1 mark is given for being able to tell that T of CMBR = T of black hole OR doing the longer 
calculation 
1 mark is given for calculating R 
1 mark is given for calculating M 
 
Since T = 2.725K,  
R = ħc/4πkT = (2.29 x 10-3)/(4π*2.725) = 6.695 x 10-5 m 
 
M = 6.892 x 1026 x 6.695 x 10-5 = 4.614 x 1022 kg 
 

xi) Explain the significance of this result on any black hole with a radius larger than a black 
hole with Hawking radiation in equilibrium with the CMBR [2 mark].  

 
Any black hole with a radius larger than 0.067mm will not evaporate at the present time. 



DRQ: Earth in another Turf [20 marks] 
 
Part I: Binary Star Systems [10 marks] 
 
According to stellar surveys, more than half of all Sun-like stars are part of multiple star 
systems. This means that in considering the search for extra-terrestrial life, there is a 
significant chance that life may evolve on planetary systems in such multiple star-systems. In 
the first part of this question, we analyse a binary star system to understand how a planet 
orbiting in such a configuration will experience temperature variations.  
 
 Star A Star B 
Mass (M) 0.9 M☉ 1.1 M☉ 
Radius (Solar Radii) 0.83 R☉ 2.1 R☉ 

 
Distance between star A and star B = 12 AU 
 
i) Estimate the star surface temperatures [3 marks] 
 
Star A 
Luminosity = 3.846 x 1026 x 0.9^3.5= 2.66 x 1026 W 
 
L ∝ R2T4 
0.9^3.5 = (0.832)(T/Tsun)4 
0.9^3.5 = (0.832)(T/5778)4 
T = 5784 K 
 
Star B 
Luminosity = 3.846 x 1026 x 1.1^3.5 = 5.37 x 1026 W 
 
L ∝ R2T4 
1.1^3.5 = (2.12)(T/Tsun)4 
1.1^3.5 = (2.12)(T/5778)4 
T = 4334 K 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



The stars A and B are separated by a distance of 12 AU. A planet with characteristics identical 
to the Earth orbits a point X in a circular orbit with a radius of 2 AU (see figure 1).  
 

 
Figure 1 Diagram of the A-B binary system with the Earthlike planet orbiting 
Star A. This diagram is not drawn to scale.  

 
The gravitational field strength around by a star is given as 
 

gstar = GMstar/r2 
Where  
G is Newton’s gravitational constant (see formula booklet) 
Mstar is the mass of the star 
And r is the distance from the centre of the star.  
 
At point X, which lies between stars A and B, the gravitational fields of both stars cancel 
each other out completely (i.e. the magnitude of the gravitational field strength of star A 
and Star B are equal).  
 
ii) Using the equation above or otherwise, calculate the distances from the centres of stars 

A and B to point X respectively [2 marks].  
 
At point X, the gravitational field vectors of both stars cancel. Therefore,  
 

GMA/dAX2 = GMB/dBX2 
MA/dAX2 = MB/dBX2 
MA/MB = dAX2/dBX2 

dAX/dBX + 1 = (dAX + dBX)/dBX = dAB/dBX 
 

Solving, 
dBX = (1/1.66942) x 12 AU = 6.3008 AU 

dAX = 12 – 6.3008 = 5.6992 AU 
 
 



iii) Is such an orbit stable? Explain. [2 marks] 
 
No, such an orbit is not stable as any slight movement (perturbation) of the planet away 
from the orbital plane around X will cause it to leave this orbital path.  
 
The average surface temperature of a planet orbiting a single star can be estimated to be 
 

[I0/(16πd2)](1- α) = σTp4 
 
Where I0 is the star’s luminosity constant (3.827 × 1026 J/s for the Sun);  
Tp is the average temperature of the planet;  
α is the planetary albedo, which has a value of 0.3 for the Earth;  
d is the distance from the star; 
and σ is the Stefan-Boltzmann constant, which has a value of 5.67 × 10−8W/(m2 · K4). 
 
iv) Modify the above equation for the case of a binary star system. [1 mark] 

(Hint: Linear addition can be performed on the left hand side of the equation) 
 

Assuming that linear addition can be performed on the LHS of the equation, 
[(I0,A/(16πdA2)) + (I0,B/(16πdB2))] x (1- α) = σTp4 

 
v) Find the steady state temperature of the planet as described in figure 1. [2 marks]  
 
dA = (5.69922 + 22)0.5 AU) x (1.5 x 1011 m/AU) = 9.0599 x 1011 m 
dB = (6.30082 + 22)0.5 AU) x (1.5 x 1011 m/AU) = 9.9159 x 1011 m 
 
[(2.66 x 1026)/(9.0599 x 1011)2 + (5.37 x 1026)/(9.9159 x 1011)2] x (0.7)/16π  
= 5.67 x 10-8 Tp4 
 
Tp = 121.7 K 
 
Part II: Tidal Locks and Love Numbers [10 marks] 
 
When searching for potentially habitable worlds, there is generally both a lower and upper 
limit for stellar masses for parent stars. The upper limit of stellar masses exists due to the fact 
that stars of higher mass tend to exhaust their nuclear fuel at much greater rates, dying at 
timescales too short for life to evolve.  
 
On the other hand, there is also a lower limit of stellar masses which arises from a less intuitive 
phenomenon. As the mass of a star decreases, its luminosity similarly decreases more than 
proportionately. This means that planets orbiting lower mass stars need to orbit at radii much 
closer to their host stars. At a certain point, the planet would become tidally locked to the 
star, with one side being plunged in constant daylight and another that never sees the light.  
 
Such planets with incredibly asymmetric temperature profiles could therefore impact the 
habitability of life even in supposed habitable zones. Therefore, it would be of particular 
interest to get a ballpark estimate of the lower limit for such stars. This can be done by making 
several reasonable assumptions, and applying the equation for tidal locking and stellar 
luminosity.  
 
The time for a planet to become tidally locked to its parent star tlock can be estimated using 
the equation (in SI units) as follows: 



 
tlock = (ωa6IQ)/(3GMstar2k2R5) 

 
where ω is the initial spin rate in radians per second 
a is the semi-major axis of the motion of the planet around the star 
R is the radius of the planet 
I = 0.4MplanetR2 is the moment of inertia of the planet 
G is the gravitational constant 
Mstar is the mass of the star 
k2 is the Love number of the satellite, which measures a body’s rigidity 
Q is the dissipation function of the satellite 
 
In practice, Q and k2 are not easily determined values. In this case, for our estimation we 
consider the case where k2/Q = 0.0011 which is equal to the known value for the Moon 
 
Assuming an Earth-like planet in a circular orbit, we will calculate the smallest mass of star in 
which the planet can orbit in the habitable zone without becoming tidally locked within 1 billion 
years.  
 
vi) Show that for this planet, a3/Mstar = 101.52 [3 marks] 
 
tlock = (1 x 109) x 365 x (24 x 3600) = 3.1536 x 1016 seconds 
ω = 2π/(86164.1) = 7.292 x 10-5  rad/s (Note: 86164.1s is the length of the sidereal day) 
R = 6.370 x 106 m (From formula book) 
I = 0.4 x (5.972 x 1024) x (6.370 x 106)2 = 9.693 x 1037 kgm2 
G = 6.67384 x 10-11 Nm2kg-2 (From formula book) 
k2/Q = 0.0011 (given) 
a and Mstar are unknown quantities.  
Rearranging,  
a6/Mstar2 = 3Gk2R5tlock/ωIQ = [3(GR5tlock) x (k2/Q)] / [ωI] 
= [3(6.67384 x 10-11) x (6.370 x 106)5 x (3.1536 x 1016) x 0.0011]/[(7.292 x 10-5 ) x (9.693 x 
1037)] 
= [3 x 6.67384 x (6.370)5 x 3.1536 x 0.0011]/[7.292 x 9.693] x [10-11 x 1030 x 1016]/[ 10-5  x 
1037)] 
= 1.0306 x 104 
a3/Mstar = 101.52 (shown) 
 
The inner and outer radii of the habitable zone of a star can be approximated by the following 
equations: 

rinner = (Lstar/1.1Lsun)0.5 
router = (Lstar/0.53Lsun)0.5 

 
Where r is measured in Astronomical Units 
 
vii) Using the above information, provide an expression for a (in appropriate units), the semi-

major axis of the planet for our calculations, in terms of Lstar and Lsun [1]. Briefly explain 
your answer in qualitative terms [1 mark].   

 
Since the goal of our calculations is to find the minimum stellar mass that will not result in 
tidal locking within our specified timespan, we want to keep the planet as far away from the 
star as possible. Therefore, the appropriate value of a is simply router.  
 



Therefore, a = 150 x 109 x ((Lstar/Lsun)/0.53)0.5 
Examiner’s comments: Nobody seemed to remember that it is a circular orbit.  
 
viii) Using the answers obtained in Questions 4 and 5, find the minimum stellar mass for an 

Earthlike planet to orbit around it without being tidally locked for at least 1 billion years. 
[3 marks] 

 
Based on the Mass-Luminosity Relation for Main Sequence stars, we know that 
Lstar/Lsun = (Mstar/Msun)3.5 
 
Substituting,  
a/Mstar = (150 x 109 )3 x ((Mstar/Msun)3.5/0.53)1.5/ Msun = 101.52 Mstar/Msun 
(Mstar/Msun)4.25 x ((1.50 x 1011 )3 x 0.53-1.5)/ Msun = 101.52 
(Mstar/Msun)4.25 x (8.75 x 1033) / (1.989 x 1030) = 101.52 
(Mstar/Msun)4.25 x 4399.2 = 101.52 
Mstar/Msun = 0.412 
 
TRAPPIST-1 is an ultra-cool dwarf star with 7 planets orbiting around it, of which five are 
approximately Earth-sized and 3 of which lie within the habitable zone. TRAPPIST-1 has a 
mass of 0.0802±0.0073 solar masses.  
 
ix) Based on your result in question 6, explain qualitatively if there is any insight it provides 

on the habitability of these planets. [2 marks] 
 
Possible answers: 
 
The standard formula for calculating the habitable zone may not be appropriate for calculation 
of the habitable zones when tidal locking is present.  
 
Since there is tidal locking, life may not be able to arise as one side of the planet will be in 
perpetual daylight, resulting in scorching temperatures, while temperatures on the night side 
is likely too low to support life.  
 
Since there is tidal locking, life may only arise in the twilight zone/terminator region.  
 
With tidal locking, life may still exist if there are winds/convection driven currents to balance 
temperatures on the day and night time side.  
 
Other answers acceptable if they make sense. The purpose of this final part is just 
to see if they understand the question (especially since much of it is explained in 
the opening paragraph) 



Life Around a Chubby Sun [20+1 marks] 
 
Suppose that a group of amateur astronomers has discovered a new star system that is similar 
to our Solar System (consists of a main-sequence star and several planets). They used a 
telescope that has a limiting magnitude of +10. From careful analysis of the data obtained, it 
is known that the star has a mass of 20 𝑀𝑀⨀.  
 
i) The distance of the star from Earth is roughly 1000 pc. Determine the visual 

magnitude,𝑚𝑚𝑉𝑉 , of the newly discovered star, if the luminosity of the star is 100𝐿𝐿⊙. [1 
mark] 

 
ii) This star, like all other main-sequence star, produces energy in its core via hydrogen-

burning process or also known as the proton-proton fusion chain reaction. In this reaction, 
4 protons are fused to produce one He atom. If only 10% of the mass is available for 
burning, determine the main-sequence lifetime of this star in years. You may assume 
that the star is made up of hydrogen only where applicable. [4 marks] 

 
iii) A boy who is eager to learn astronomy knows about the discovery of this star. He wants 

to observe it but using a weaker telescope. The diameter of his telescope is one-half of 
that of the telescope used by the astronomers. Is he able to observe it? Hint: calculate 
and compare the limiting magnitudes of the two telescopes. [2 marks] 

 
iv) A fast-rotating planet of radius 𝑅𝑅⊕ is discovered to be revolving around this star with a 

circular orbit at distance 𝑑𝑑  = 1.523 AU. The surface albedo of this planet is 0.25. 
Determine the average blackbody temperature at the surface of the planet. [5 marks] 

 
v) Judging from the surface temperature only, is it possible for humans to live on that planet? 

If not, propose the best temperature range and the suitable distance between the star 
and planet so that humans are able to live on it. [5 marks] 

 
vi) This star, after ending its lifetime in the main-sequence stage, will eventually move up 

along the giant branch, during which its temperature drops by a factor of 3 and its radius 
increases 100-fold. Determine its new visual magnitude. [4 marks] 

 

vii) Bonus: State what’s unrealistic with the scenario presented in this question. [1 mark] 
 
SOLUTION 
 
i) By using Pogson’s equation: 

𝑚𝑚𝑉𝑉 −𝑚𝑚⊙ = −2.5 log
𝐸𝐸
𝐸𝐸⊙

 

𝑚𝑚𝑉𝑉 − (−26.7) = −2.5 log �
100𝐿𝐿⊙
𝐿𝐿⊙

×
(1𝐴𝐴𝐴𝐴)2

(1000 𝑝𝑝𝑝𝑝)2� 

𝑚𝑚𝑉𝑉 = 9.87 
 
ii) Each chain reaction gives 26.73 MeV, 4. 28 ×10−12Joules of energy 
The stellar luminosity is 100 𝐿𝐿⊙, thus you would need 8.99 ×1040 chain reactions/s. 
Mass available for burning is 10% or 4 ×1030kg, assuming these are matter made up of 
hydrogen, there would be 2.48 ×1057hydrogen available, which then makes 5.99 ×1056 chain 
reactions possible. 



 
This means, the main sequence lifetime would be 6.66 ×1015s or 0.21 billion years. 
 
iii) 𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 2.5 log 𝐷𝐷

𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 

Hence, to compare two limiting magnitude of two telescopes: 
𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1 − 𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2 = 2.5 log

𝐷𝐷1
𝐷𝐷2

 

 
We know that 𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1 = 10 and 𝐷𝐷1 = 2𝐷𝐷2. Hence we can calculate 𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2. Putting in all the 
numbers into the equation will yield 𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2 = 9.25. Hence, it is impossible for the boy to 
observe the star. 
 
iv) Let 𝐹𝐹 be the radiation flux of the star at the planet’s surface. 

𝐹𝐹 =
𝐿𝐿

4𝜋𝜋𝑑𝑑2
 

𝑑𝑑 is the distance from the star to the planet and 𝐿𝐿 is the luminosity of the star. We assume 
that out of the total flux incident, fraction 𝛼𝛼 is reflected and the rest is absorbed. Hence the 
absorption rate is given by 

𝐴𝐴 = (1 − 𝛼𝛼)𝜋𝜋𝑅𝑅2𝐹𝐹 
𝑅𝑅 is the radius of the planet.  
Here, we will neglect the internal energy source of the planet. Let 𝑇𝑇 be the black-body 
temperature of the planet’s surface. Since it is rotating fast we can assume that the planet is 
being heated up uniformly to the same temperature 𝑇𝑇. At equilibrium, the total amount of 
black-body radiation emitted must be equal to the absorption rate. 
 

4𝜋𝜋𝑅𝑅2𝜎𝜎𝑇𝑇4 = (1 − 𝛼𝛼)𝜋𝜋𝑅𝑅2
𝐿𝐿

4𝜋𝜋𝑑𝑑2
 

∴ 𝑇𝑇 = �(1 − 𝛼𝛼)𝐿𝐿
16𝜋𝜋𝜋𝜋𝑑𝑑2

4
 

 
We have derived the formula to determine the planet’s surface temperature. We know that 
𝛼𝛼 = 0.25, 𝑑𝑑 = 1.523 AU and 𝐿𝐿 = 100𝐿𝐿⊙. Putting in the numbers into the formula (and in S.I. 
units) will yield 

𝑇𝑇 = 664.66 𝐾𝐾 
 
v) Definitely not possible. This temperature is too high for living things to survive. A good 
range of temperature is from 273 K – 313 K. 
For 𝑇𝑇 = 273𝐾𝐾,𝑑𝑑 = 9.03 𝐴𝐴𝐴𝐴 
For 𝑇𝑇 = 313𝐾𝐾,𝑑𝑑 = 6.87 𝐴𝐴𝐴𝐴 
Hence, the best distance is from 6.87 AU – 9.03 AU. 
 
vi) By using Pogson’s equation: 
 

𝑚𝑚𝑉𝑉1 − 𝑚𝑚𝑣𝑣2 = −2.5 log
𝐸𝐸1
𝐸𝐸2

 

 
𝑚𝑚𝑉𝑉1 is the magnitude in main-sequence lifetime 
𝑚𝑚𝑉𝑉2 is the magnitude when moving up the giant branch. 
 



9.87 −𝑚𝑚𝑣𝑣2 = −2.5 log
𝐿𝐿1
𝐿𝐿2

 

9.87 −𝑚𝑚𝑣𝑣2 = −2.5 log
𝑅𝑅12𝑇𝑇14

𝑅𝑅22𝑇𝑇24
 

9.87 −𝑚𝑚𝑣𝑣2 = −2.5 log
𝑅𝑅12×81𝑇𝑇24

10000𝑅𝑅12𝑇𝑇24
 

𝑚𝑚𝑣𝑣2 = 4.64 
  

 
 

vii) Just want to point out that it’s quite unnatural for the star with  20 𝑀𝑀⨀ to have 
100𝐿𝐿⊙. But for the sake of the question, let’s just accept it. 

    



Space Telescope [20 marks] 
 
The Hubble Space Telescope, which has been in service since 1990, is going to be succeeded by 
a new telescope, the James Webb Space Telescope (JWST). We will investigate the properties of 
the space telescope.  
 
Part I: The Cosmological redshift [5 marks] 

  
Due to the nature of the universe, very distant objects are subject to redshift. As a result, most 
features that would usually be observed in the visible spectrum will become redshifted. For a 
homogeneous and isotropic universe,  

  
1+z = anow/athen 

  
Where a is the cosmic scale factor, and z is redshift. Anow is assumed to be 1.  

  
The James Webb Space Telescope aims to observe distant objects, and as such, will be able 
to analyze the redshifted spectra more readily. It has a detection range from 600 to 28,500 
nm. Notice that this only covers a small portion of the visible spectrum.  

  
i) For the following lines, which ones are visible for a scale factor of 0.12? [3 marks] 

  
Line  Hα  Hβ   Lα  Lβ  Ne II  He II   H2O  
Wavelength (nm)  656.3  486.1  121.6  102.6  44.8  30.4  19230  

  
ii) The most prominent feature of extremely distant galaxies is their Lyman lines. What is the 

maximum redshift that can be analyzed? [2 marks] 
 
To calculate redshift, z = (anow/athen) – 1,   
Since z = Δλ/λ0, λ = (z+1)λ0  
Taking anow=1,  
Λ=λ0/athen  
The lines which are visible are thus Hα , Hβ, Lα, Lβ. NE II and HE II are now visible in the 
visual spectrum. However, they are not within JWST’s range. H2O is shifted out of the range.  
By shifting the Lβ line to 28500 nm, we get z = 276.8  
 
 
 
 
 
 
 
 
 
 
 
 



Part II: Orbit [5 marks] 
[Assume a spherical orbit, and disregard the moon in the following questions] 
 
Due to the combined gravitational pull of both the sun and the earth, the James Webb Space 
Telescope orbits the sun under what is known as a “halo orbit” in the L2 Lagrange point. In this 
orbit, the relative position of the sun, earth and satellite is always fixed (refer to figure below): 
 

 
 
iii) Derive an expression involving only 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ ,𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑅𝑅 , and r. Confirm this for 𝑟𝑟 = 1.5×109 𝑚𝑚. 

[4 marks] 
 

Since L2 is a point that follows the Earth, and the fact that the Sun, Earth, and L2 form one line:  
Fsun + Fearth = ω2(R+r)  [1 mark] 

  
Inserting Fs and Fe, 

GM/(R+r)2 + Gm/r2 = ω2(R + r)  
Since ω = ωearth,  
  

GM/(R+r)2 + Gm/r2 = GM(R+r)/R3 [1 mark]  
Eliminating G, we get   

M/(R+r)2 + m/r2 = M(R+r)/R3 [1 mark] 
 
Substitute values of R, m and M to and show that LHS = RHS. [1 mark] 
 
iv) Compute the ratio of r to the earth-moon distance and comment on the feasibility of 

conducting repairs on the JWST. [1 mark] 
 

𝑟𝑟
𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

= 3.9 

 
The large distance between moon (and hence earth) and the JWST renders it unfeasible to 
conduct repairs. 
 
 
 

Sun 

R r 



Part III: Orbital Redshift [5 marks] 
 
In addition to the galaxy’s expansion, the JWST’s orbital motion around the sun leads to received 
electromagnetic waves undergoing a further Doppler shift as given by 
 

𝑧𝑧 =  �
𝑐𝑐 + 𝑣𝑣
𝑐𝑐 − 𝑣𝑣

− 1 

 
v) Calculate the JWST’s orbital velocity in the L2 point. [1 mark] 

 
𝑣𝑣 = 𝑟𝑟𝑟𝑟 = (1.5 ∗ 1011)(2𝜋𝜋/1𝑦𝑦𝑦𝑦) 

= 29886 𝑚𝑚𝑠𝑠−1 
 
vi) Calculate the resulting Doppler shift, z. By how much, in nm, is the H-alpha line shifted due 

to this? [2 marks] 
 

𝑧𝑧 =  �
𝑐𝑐 + 𝑣𝑣
𝑐𝑐 − 𝑣𝑣

− 1  

≈
𝑣𝑣
𝑐𝑐

   
                   = 9.96 ∗ 10−5   

𝛥𝛥𝛥𝛥 = 𝑧𝑧 ∗  𝜆𝜆0  
                                                  = (9.96 ∗ 10−5)(656.3 ∗  10−9)  

               = 0.0654 𝑛𝑛𝑛𝑛 
 
vii) Compare your value of z with that obtained in part I, and comment on your result.  

[2 marks] 
 

𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝜆𝜆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

= 73630 

 
Redshift due to expansion is much more apparent than redshift due to orbital motion. 
 
Part IV: Optics [5 marks] 

 
Now, we analyze the mirror of the JWST. It is larger than the one in HST. Once again, the nature 
of the mirror necessitates the use of multiple segments as opposed to one large segment. As 
shown in the diagram, the telescope consists of 18 hexagonal segments, each 1.32m in diameter 
(flat edge to flat edge).  
 
viii) Derive the total area of the mirror. What would be the equivalent diameter for a standard 

circular mirror? [2 marks] 
 



ix) Compared to the Hubble Space Telescope (D=2.4m), how much more collecting power 
does the telescope have? [1 mark] 

 
x) At what wavelength will the resolving power of the JWST match the one of the HST at 

visible light? Assume that is the JWST mirror is approximately circular. [2 marks] 
 
For a hexagon, the area can be expressed as A=2r^2*sqrt(3), which gives us   
Thus, the area is  

  
18*A  
=18*2*r^2*sqrt(3)  
=27.2 m^2  

  
The collecting power is directly proportional to the collecting area of the telescopes. Thus,  
 
PS/Ph=As/AH  
=As/(π*(Dh/2)^2)  
=6x  

  
The resolving power is defined for a wavelength by the Rayleigh criterion, which states that 
sin(α)=1.22λ/D, where α is in radians. Thus, equating for both  

  
1.22λs/Ds=1.22(λh/Dh)  
λs = λhDs/Dh  
=1348 nm 
 



Practical Astronomy [20 marks] 
 
Part I: The Night Sky [10 marks] 
 

 
 

Identify the following on the diagram given: 

i) Circle Bellatrix (γ Ori). [1 mark] 
ii) Circle Achernar (α Eri). [1 mark] 
iii) Trace out the ‘Winter Triangle’ and label it. [1 mark] 
iv) Trace out the ‘Great Square of Pegasus’. [1 mark] 
v) Trace out the constellation lines of ‘Auriga’. [1 mark] 
vi) List down 2 prominent galaxies and mark their approximate positions on the diagram. [2 

marks] 
vii) List down 1 prominent nebula aside from M42 and mark their positions on the diagram. 

[1 marks] 
viii) List down 2 prominent open star clusters and mark/circle their approximate positions on 

the diagram. [2 marks] 
Answers: Refer to Stellarium - 6 October 2017 2am  



Part II: Setting up a German Equatorial Mount [10 marks] 
 
You want to set up an equatorial mount to observe the night sky in Singapore. A detailed 
procedure of the setup process is written on the following page.  Identify as many errors as 
possible, and explain how it should be corrected. Write your corrections on the blank space 
provided on the right side of the page.  
 
A photograph of a standard equatorial mount is shown below for reference, with the parts 
labelled.  
(Note: There are no errors in the photograph. It is for your reference only)  
 

 
 
 
Sample format of answers 
Procedure 
1. Install the tripod on top of the mount head and secure 

it using the locking screws 
 
 

Your answers here 
The mount head should be 
installed on the top of the 
tripod, not the other way 
round 

Note: You w ill be awarded 0.5 marks for every error found, and 1 mark for a 
correct explanation for a total of 1.5 marks per error 
 



 
Procedure to Set up a German Equatorial Mount 

 
Initial Steps 
 

1. Transport the mount to the observation site. 
Ensure that both the RA and DEC clamps are 
locked and engaged so that the axes do not freely 
rotate when transported.  
 

2. To begin the setup process, spread the tripod legs 
and place the tripod on flat ground. If the ground 
is soft or muddy, drive the tripod legs as deep into 
the ground as possible to ensure stability. Orient 
the tripod roughly in such a position that when the 
mount head is installed, the front of the mount 
(where the counterweight bar protrudes) will point 
due south.  

 
3. Install the equatorial mount head onto the top of 

the tripod, and tighten the main central screw, 
leaving a small amount of slack so that the azimuth 
axis can be adjusted for more precise polar 
alignment.  

 
4. Using a compass, ensure that the mount head is 

roughly polar aligned with the mount head pointing 
due south. Level the mount using a bubble level, 
and use the altitude adjustment screw to ensure 
that the latitude reading corresponds correctly to 
your geographic location.  

Your answers here 

 
Installing the telescope and counterweights  
 

5. In steps 6 and 7, ensure that the mount’s axes are 
unlocked to ensure smooth movement.  
 

6. Install the telescope tube by sliding the telescope’s 
dovetail into the mount’s dovetail saddle. Tighten 
the locking screws on the saddle to hold the 
telescope in place.  

 
7. Install the counterweight shaft onto the equatorial 

mount. Slide the counterweights into the 
counterweight shaft and tighten the counterweight’s 
locking screw to hold it in place. Install the stopper 
to prevent the counterweights from falling off the 
shaft.  

Your answers here 

 
 
 
  



Balancing the setup 
 

8. Balance the Right ascension axis: Rotate the RA axis 
such that the counterweight shaft is parallel to the 
ground. Lock the RA axis and leave the DEC axis 
unlocked to determine the balance point. Shift the 
counterweights along the counterweight shaft until 
the RA axis is balanced (i.e. no tendency to rotate in 
any direction around the RA axis).  
 

9. Balancing the Declination axis: With the 
counterweight shaft still parallel to the ground, Lock 
the RA axis and leave the DEC axis unlocked to 
determine the balance point. Shift the telescope tube 
forwards or backwards to balance the DEC axis. 
When there is no tendency for the DEC axis to rotate, 
the mount is sufficiently balanced.  

 
10. As far as possible, do not install all the accessories 

(diagonals, eyepieces and finderscopes) until the 
balancing is complete to ensure that the balance of 
the system is not disrupted.  

Your answers here  

 
Answer Scheme 
 
Erroneous steps in red, corrections in green 
 

1. Transport the mount to the observation site. Ensure that both the RA and DEC clamps 
are locked and engaged so that the axes do not freely rotate when transported.  
The mount should be transported with the axes disengaged so that the gears will not 
be damaged during handling. [1.5] 

2. To begin the setup process, spread the tripod legs and place the tripod on flat ground. 
If the ground is soft or muddy, drive the tripod legs as deep into the ground as possible 
to ensure stability. Orient the tripod roughly in such a position that when the mount 
head is installed, the front of the mount (where the counterweight bar protrudes) will 
point due south.  
We are in Singapore; mount should point north [1.5] 

3. Install the equatorial mount head onto the top of the tripod, and tighten the main 
central screw, leaving a small amount of slack so that the azimuth axis can be adjusted 
for more precise polar alignment.  

4. Using a compass, ensure that the mount head is roughly polar aligned with the mount 
head pointing due south. Level the mount using a bubble level, and use the altitude 
adjustment screw to ensure that the latitude reading corresponds correctly to your 
geographic location. As per point 2. No additional credit for picking this up twice.  

5. In steps 6 and 7, ensure that the mount’s axes are unlocked to ensure smooth 
movement. No please don’t do that. Ensure it is locked to prevent any sudden 
movements during mounting the telescope and counterweights. [1.5] 

6. Install the telescope tube by sliding the telescope’s dovetail into the mount’s dovetail 
saddle. Tighten the locking screws on the saddle to hold the telescope in place.  

7. Install the counterweight shaft onto the equatorial mount. Slide the counterweights 
into the counterweight shaft and tighten the counterweight’s locking screw to hold it 
in place. Install the stopper to prevent the counterweights from falling off the shaft.  



Steps 6 and 7 should be swapped. Counterweights must be installed first! [1.5] 
8. Balance the Right ascension axis: Rotate the RA axis such that the counterweight shaft 

is parallel to the ground. Lock the RA axis and leave the DEC axis unlocked to 
determine the balance point. Shift the counterweights along the counterweight shaft 
until the RA axis is balanced (i.e. no tendency to rotate in any direction around the RA 
axis). Should be the other way round. [1.5] 

9. Balancing the Declination axis: With the counterweight shaft still parallel to the ground, 
Lock the RA axis and leave the DEC axis unlocked to determine the balance point. Shift 
the telescope tube forwards or backwards to balance the DEC axis. When there is no 
tendency for the DEC axis to rotate, the mount is sufficiently balanced.  
9 & 10 should be swapped. The DEC should be balanced before RA. [1.5] 

10. As far as possible, do not install all the accessories (diagonals, eyepieces and 
finderscopes) until the balancing is complete to ensure that the balance of the system 
is not disrupted. We should install the accessories before balancing, so that the mount 
is balanced in the final configuration. [1.5] 

 
Marking scheme: 0.5 marks for identifying the error, additional 1 mark for correcting the 
error correctly.  
 
Total possible score: 1.5 x 7 = 10.5 (Max 10).  
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